Nissan

Вентилятор охлаждения двигателя – свежий воздух для радиатора и мотора! Регулирование оборотов вентилятора с помощью шим Регулятор оборотов двигателя вентилятора охлаждения.

Вентилятор системы охлаждения двигателя представляет собой специальное устройство, которое обеспечивает обдув радиатора и разогретого мотора автомобиля посредством постоянного и равномерного отвода в атмосферу излишнего тепла.

Вентилятор охлаждения двигателя – разновидности устройства

Конструкция данного механизма, который нередко называют вентилятором радиатора, достаточно проста. В ней предусмотрено наличие одного шкива, на котором размещаются четыре и больше лопасти. По отношению к плоскости вращения они монтируются под определенным углом, за счет чего интенсивность нагнетания воздуха повышается (ниже мы расскажем, куда именно дует вентилятор).

Также в конструкции имеется привод. Он может быть: гидромеханическим; механическим; электрическим. Привод гидромеханического типа – это гидравлическая либо специальная вязкостная муфта. Последняя получает требуемое движение от коленвала. Такая муфта частично или полностью блокируется при повышении температуры заполняющего ее силиконового состава.

Само повышение температуры обуславливается увеличением нагрузки на мотор транспортного средства, которая возникает при увеличении количества оборотов коленвала. Вентилятор включается в тот момент, когда происходит блокировка муфты. А вот блок гидравлической муфты включается при изменении в ней объема масла. В этом заключается ее принципиальное отличие от вязкостного приспособления.

Под механическим понимают привод, выполняемый ременной передачей от . На современных автомобилях он практически не используется, так как для вращения вентилятора затрачивается значительная мощность ДВС (мотор отдает слишком много своих сил). А вот электропривод, наоборот, применяется очень часто. В его составе два основных компонента – система управления и электродвигатель вентилятора системы охлаждения двигателя.

Система управления отслеживает температуру, которую имеет мотор автомобиля, и обеспечивает функционирование механизма охлаждения. Электромотор привода подключен к бортовому компьютеру. Схема управления стандартного электрического привода состоит из:

  • ЭБУ ();
  • температурного датчика, который следит за температурой охлаждающего состава;
  • расходомера воздуха;
  • реле (по сути, регулятор), по команде коего включается и выключается вентилятор;
  • датчика для отсчета оборотов коленвала.

Исполнительным механизмом при этом является именно электрический мотор, обеспечивающий привод. Принцип работы озвученной схемы достаточно прост: датчики передают сообщения в ЭБУ; электронный блок, куда попадают сигналы, производит их обработку; после анализа сообщений ЭБУ запускает регулятор (реле) вентилятора.

Многие авто последних лет выпуска в своей конструкции имеют не регулятор, по командам которого включается и выключается вентилятор, а отдельный блок управления. Его использование дает гарантию на более экономичное и по-настоящему эффективное функционирование всей охлаждающей системы (блок всегда знает, куда дует вентилятор, под каким углом он расположен, когда требуется отключить устройство и так далее).

Диагностика неисправностей вентилятора охлаждения

Ни самый инновационный электрический мотор, имеющий большую мощность, ни сверхнадежный блок или регулятор управления не в состоянии на все сто процентов защитить охлаждающую систему от поломок. Учитывая то, что вышедший из строя вентилятор охлаждения, который дует не туда, куда надо, или вовсе не вращается, способен стать виновником перегрева двигателя, следить за его нормальным функционированием требуется постоянно.

Вовремя сделанный ремонт компонентов системы убережет ваш автомобиль от многих неприятностей, но здесь важно правильно установить причину поломки вентилятора. Другими словами, сначала нужно найти проблему, по которой, например, не работает регулятор оборотов коленвала либо блок управления, либо электрический мотор. Диагностику неисправностей вентилятора может провести любой водитель, ориентируясь на далее приведенные рекомендации.

Проверку следует начинать с демонтажа разъема (штекерного) температурного датчика и его обследования. В тех случаях, когда датчик является одинарным, нужно взять небольшой кусок обычной проволоки и замкнуть в штекере клеммы. При исправном вентиляторе блок управления или реле должны дать команду на его включение при замыкании. Если интересующее нас устройство не включается при такой проверке, это значит, что требуется его ремонт либо замена.

При наличии двойного термодатчика принцип проверки немного изменяется, и выполняется в два этапа:

  1. Замыкают красный и красно-белый проводок. При этом должно фиксироваться медленное вращение вентилятора.
  2. Замыкают проводки красного и черного цвета. Теперь вращение должно значительно ускориться.

Если вращения не наблюдается, вентилятор придется демонтировать и установить на его место новое устройство. Если постоянно работает вентилятор охлаждения радиатора (дует без перерывов), есть вероятность того, что из строя вышел датчик его включения. Проверить такое подозрение несложно. Необходимо включить зажигание, а затем удалить наконечник провода с датчика.

Если выключения устройства после этого не произошло, можно смело покупать новый регулятор (датчик) отключения устройства. Ситуации, когда постоянно работает вентилятор охлаждения радиатора, встречаются не редко, и теперь вы знаете, как решить такую проблему. Также имеет смысл выполнить проверку предохранителя в тех случаях, когда вы сомневаетесь в работоспособности описываемого в статье механизма. Делается это так:

  • от плюсовой клеммы аккумуляторной батареи подают на красно-черный или красно-белый проводок в разъеме вентилятора питание;
  • от минусовой клеммы подают заряд на проводок коричневого цвета.

Если регулятор либо блок не отреагировал (устройство не включилось), проверьте провод температурного датчика (все имеющиеся на нем разъемы и штекера). Возможно, понадобится простой ремонт кабеля (например, его изолирование, замена штекера). Если дело не в проводе, значит, придется приобретать новый вентилятор, так как ваш сломался.

Демонтаж, обслуживание и ремонт вентилятора охлаждения своими руками

Достойный уровень охлаждения радиатора и двигателя машины достигается только в том случае, когда вентилятор периодически проверяют на наличие разных мелких поломок и загрязнений. Совсем несложно регулярно выполнять такую проверку и при помощи щетки очищать устройство от грязи и пыли.

Принцип демонтажа вентилятора прост: от АКБ откидывают провод массы; отключают все без исключения провода, которые подходят к рассматриваемому узлу; откручивают болты крепления устройства. Теперь можно слегка сдвинуть кожух вентилятора и посмотреть на его состояние. Подобный осмотр позволяет выявить немало поломок и выполнить:

  • Зачистку и замену проводов: их некачественный контакт зачастую и является причиной неадекватной работы вентилятора.
  • Ремонт щеток (а точнее их замену): данный элемент системы чаще других выходит из строя, так как щетки очень быстро изнашиваются, собирая всю грязь с дороги.
  • Устранение замыкания либо обрыва обмоток ротора: иногда они находятся в рабочем состоянии, но плохо функционируют из-за скопившихся на них загрязнений. Решить данную проблему и вовсе не сложно – достаточно смочить в растворители ветошь и скрупулезно очистить обмотки (при необходимости допускается использовать и специальные щетки для чистки).

Иногда требуется менять электрический мотор (например, когда вентилятор не запускается при хорошо прогретом двигателе). Ремонт этой важной части устройства охлаждения, к сожалению, не выполняется.

Куда дует вентилятор охлаждения?

В этой статье мы не можем обойти вниманием вопрос о том, куда дует интересующий нас механизм. Именно его задают экспертам и коллегам-автолюбителям пользователи на десятках и сотнях форумах, посвященных обслуживанию транспортных средств. На самом деле ответ на него очень прост.

Само назначение охлаждающего устройства и принцип его работы, описанный выше, говорит нам о том, что дует он исключительно на двигатель, засасывая холодный воздух через радиатор.

Если в вашем автомобиле поток воздуха направлен не на мотор, а на радиатор, это означает только то, что вентилятор неправильно подключили после технического обслуживания либо выполнения ремонтных работ. Вероятнее всего, просто-напросто спутали клеммы. Следует установить их правильно, и больше никогда не задаваться вопросом, куда вентилятор должен направлять поток охлажденного воздуха.

Данная схема работает следующим образом: Чем выше температура двигателя-тем быстрее вращается вентилятор охлаждения. И наоборот, чем ниже температура-тем медленнее вращается вентилятор,таким образом пока не остановится. Так же данный ШИМ регулятор снижает на грузку на бортовую сеть автомобиля, и избавляет от реле.

Схема собрана на Мосфетах и так же микросхеме ne555

Схема ШИМ ругулятора:


Для уменьшения нагрева нужно использовать несколько мосфетов повторяя цепочку R3-VT1 в параллель, количество транзисторов зависит от мощности вентилятора 200Вт - два транзистора, 300Вт - три транзистора, при больших мощностях возможно придется усиливать выходной какскад 555 таймера:

Важный момент: для равномерного распределения тока нагрузки по мосфетам используем провода сечения 1 - 1,5 кв.мм одинаковой длинны соединяя силовые выводы мосфетов с общими точками схемы.
Так как при работе вентилятора в цепи (акумулятор-вентилятор-регулятор-корпус"земля") течет значительный ток (30А) используем в этой цепи провода сечением не менее 6 кв.мм, а для обеспечения безопасности ставим в эту цепь 40А предохранитель.


Собираем все в корпусе от комутатора зажигания 402 двигателя и размещаем на левом крыле моторного отсека(благо крепёж для монтажа там есть штатно).

Настройка:

Прогреваем двигатель до 85 градусов и вращением движка резистора R7 добиваемся включения вентилятора на половину его мощьности. Алгоритм работы устройства такой, что при повышении температуры двигателя обороты вентилятора повышаются, при понижении температуры обороты вентилятора уменьшаются. В дальнейшем нужно произвести подстройку так чтобы при 80-82 градусах вентилятор не включался.

Скачать плату в LAY

P.S. На практике использования,схема показала что работа устройства далека от совершенства и его эффективность сильно зависит от состояния радиатора (если теплоотдача радиатора "как у нового" то это устройство вполне способно "сбивать температуру" и штатная система включения вентилятора будет срабатывать крайне редко даже в 30 градусную жару, ну а если радиатор "подустал" то кроме плавного разгона вентилятора эта схема ничего более не даст), поэтому рекомендую использовать эту "поделку" только в параллель штатной системе включения вентилятора.
05.2015 Глюк
За время эксплуатации окислились контакты "минусового" провода подключения к бортовой сети - уши корпуса коммутатора, ключи замерли в открытом состоянии и конечно вентилятор закрутился на макс.оборотах "на постоянку". Чистка контактов и установление надежной "массы" вернуло устройство к нормальным режимам работы, но ненадолго. Причиной неисправности оказался один из мосфетов, виновника определил по цвету перегрева его сток-исток контактов.

При протекании больших токов в цепях, выделяется энергия в виде тепла. Примером таких цепей могут служить блоки питания, усилители низких/высоких частот, ШИМ-контроллеры, выпрямительные диоды. Для отвода тепла используют металлические радиаторы разных форм и размеров, соответственно площадей. Не редко возникает проблема отвода тепла от самого радиатора, в случаях когда радиатор не совсем хорошо справляется с поставленной задачей. Для устранения этой проблемы, часто используют «кулеры» (вентиляторы), устанавливаемые на радиатор.

Также возникла проблема устранения шума, производимого вентилятором при слабых нагрузках. При слабых нагрузках радиатор холодный и хорошо справляется со своей задачей, при сильных нагрузках - горячий. В обоих случаях вентилятор вращается с одинаковыми оборотами, производя шум, даже когда охлаждение радиатора особо не нужно. Для устранения данной проблемы, была отыскана самая простая аналоговая схема регулировки (изменения напряжения, при изменении темепературы) оборотов вентилятора. Данная схема не критична к заменам транзисторов на другие, тех же проводимостей (NPN,PNP).

Схема

Изначально в схеме, в качестве датчика температуры использовался транзистор КТ315. После нескольких опытов, были следующие замечания по поводу использования этих КТ315:

Плюсы : Наличие. КТ315 навалом, они дешевые и очень распространенные. Размеры - размер КТ315 позволяет поместить его между ребер некоторых радиаторов.

Минусы : Температура. Так как у КТ315 корпус не из металла, теплопроводность малая, следственно и регулировка оборотов будет не чувствительная. Отсутствие крепления (отверстия для болта крепления к радиатору).

Из-за низкой чувствительности к изменениям температуры, пришлось заменить КТ315 на КТ940 (коих также навалом) в корпусе ТО126, с отверстием для болта и металлическим основанием. Транзистор прикручивается к радиатору/источнику тепла с использованием теплопроводной пасты.

В качестве второго транзистора, управляющего нагрузкой, подбирается любой подходящий по параметрам нагрузки и проводимостью (PNP). Печатная плата регулятора не создавалась потому, что его можно собрать навесным монтажом.

Настройка

Настройка регулятора производится следующим образом: при помощи подстроечного резистора выставляется нижний предел напряжения на нагрузке, позволяющий вентилятору работать на малых оборотах или вовсе не вращаться. Я остановился на втором варианте, подключив параллельно нагрузке вольтметр, выставил напряжение около 2,5 (В).

Видео работы устройства

Данная схема исправно работает в моем блоке питания. При существенном нагреве радиатора - вентилятор постепенно, в зависимости от температуры датчика (КТ940), изменяет свои обороты. Таким образом, можно избавиться постоянной работы вентилятора, снизить шумы и потребление энергии вентилятором. Холодные радиаторы всем! С Вами был BFG5000 .

Обсудить статью АКТИВНОЕ ОХЛАЖДЕНИЕ РАДИАТОРОВ

Автоматический регулятор мощности (скорости) вентилятора охлаждения (АРМ) - это устройство, которое управляет работой одного из вентиляторов охлаждения автомобиля. Чтобы понять принцип его работы и для чего он нужен, давайте сначала вспомним штатные (заводские) режимы работы вентиляторов охлаждения.

Когда температура антифриза в системе охлаждения достигает 99 градусов, включается первый (левый, или правый - зависит от конкретной машины) вентилятор охлаждения на половинной скорости (через добавочный резистор) и продолжает работь до тех пор, пока температура не упадет до 94 градусов. В случае, если температура не падает, а продолжает расти, то на 100 градусах включаются оба вентилятора на максимальную скорость, и отключаются на тех же 94 градусах. Указанные пороговые значения температур могут отличаться на 1-2 градуса как в плюс, так и в минус (зависит от года выпуска авто и версии прошивки). Кстати, у некоторых машин 2006 года встречается непонятный алгоритм работы 1-го вентилятора: при температуре 99 градусов он начинает включаться и выключаться на первой скорости с интервалом в 20-30 секунд. Скорее всего, это "глючный" алгоритм, т.к. срок службы вентилятора, работающего в таком режиме резко сокращается (но об этом ниже). "Лечится" эта беда заменой прошивки .

Рассмотрим недостатки штатного режима работы вентиляторов охлаждения :

  1. Вентиляторы включаются "ударно". Особенно ярко это проявляется при включении второй скорости, то есть с места и сразу на "максималку". Это негативно сказывается на сроке их службы .
  2. Два вентилятора потребляют в режиме максимального обдува порядка 50 ампер, из-за чего происходит "просадка" напряжения в бортовой сети. В пробках оно может упасть ниже 11.5 вольт. Если у вас, вдобавок, включены фары, и вы простоите в этой пробке час, то есть большая вероятность, что аккумулятор разрядится до такой степени, что не сможет потом прокрутить стартер и двигатель попросту не заведется.
  3. Температура двигателя в пробках все время повышается и понижается, а такой режим работы ДВС совсем не является оптимальным .
  4. Работа двух вентиляторов производит достаточно сильный шум, что само по себе неприятно. Вдобавок, уменьшаются обороты холостого хода из-за п.2, в общем, вибрационно-звуковая картинка работы вентиляторов - то еще "удовольствие"!
  5. Известно, что когда мы выключаем прогретый двигатель, температура его резко повышается. Цилиндры раскалены, а циркуляция антифриза в системе прекратилась. Перегрев может достигать 105-108 градусов, и если двигатель в этот момент завести, то повышенный износ поршневой гарантирован.

Основное отличие системы АРМ от заводской схемы заключается в том, что он управляет работой вентилятора бесступенчато, в режиме реального времени. Скорость его вращения изменяется плавно и своевременно , при этом она, на исправном автомобиле, практически никогда не достигает максимума. Вентилятор не "сбивает" температуру, а поддерживает её.

Система АРМ состоит из собственно блока управления вентилятором и дополнительного датчика температуры с оригинальным патрубком, который вставляется в разрез верхнего шланга радиатора. Блок управления имеет входы для подключения датчика температуры и питания (12 вольт), а также силовой выход со штатным разъемом непосредственно на вентилятор.

АРМ работает следующим образом. Когда температура двигателя достигает 95 градусов, вентилятор охлаждения (мы подключаем к АРМ левый вентилятор, по нашему мнению, он охлаждает ДВС эффективнее) начинает вращаться. Скорость его вращения такова, что видно лопасти крыльчатки. По мере роста температуры, скорость вращения плавно плавно увеличивается, и когда рост её прекращается, обороты вентилятора больше не прибавляются и он вращается с постоянной скоростью. Если температура пошла вверх, то скорость опять немного увеличится, если вниз - уменьшится, и т.д. Таким образом, вентилятор работает на поддержание стабильной температуры охлаждающей жидкости в допустимом интервале.

Что нам все это дает? Вернемся к нашим пунктам (см. выше):

  • Вентилятор включается плавно , соответственно, срок его службы значительно увеличивается .
  • Потребляемый ток снижается в разы, поэтому ниже 12.5 вольт напряжение бортсети не понижается..
  • Температура ДВС стабильна на всех режимах, что очень хорошо.
  • Вентилятор Вы из салона слышать перестанете, он теперь будет работать практически незаметно.
  • Охлаждающая жидкость больше не перегревается после остановки горячего двигателя. Когда вы выключаете зажигание, АРМ остается включенным, он продолжает отслеживать температуру и увеличивает обдув, не позволяя антифризу закипать и создавать в системе охлаждения избыточное давление, вызывающее срабатывание клапана расширительного бачка. Когда двигатель охладится, АРМ полностью отключит вентилятор.
  • Главное же достоинство АРМ заключается в том, что вентилятор больше не ведет изо всех сил борьбу с перегревом, а работает в наиболее экономично м и благоприятном для двигателя режиме. А надежность системы охлаждения в целом только повысится , так как АРМ устанавливается как бы "поверх" штатной системы, при этом никаких изменений в ней не производится . В случае необходимости, можно просто вытащить из вентилятора разъем АРМ и вставить назад разъем штатной проводки. Работа системы полностью восстановится в заводском режиме . Второй вентилятор остается подключенным по штатной схеме, так что он тут же включится, если АРМ не справится. Необходимо отметить, что такая ситуация может сложиться только на тяжелом бездорожье, или в других, особенно тяжелых условиях.

АРМ производит Тверская компания ЗАО "ЭЛМАС" , а Техцентр "НИВА777" является ее официальным представителем в Московском регионе.

Сколько это стоит?

На параметры работы двигателя, среди прочего, существенно влияет оптимальный температурный режим охлаждающей жидкости. Повышенная температура охлаждающей жидкости при частичной нагрузке обеспечивает благоприятные условия для работы двигателя, что положительно влияет на расход топлива и токсичность отработавших газов. Благодаря пониженной температуре охлаждающей жидкости при полной нагрузке мощность двигателя увеличивается, вследствие охлаждения всасываемого воздуха и тем самым увеличения его количества, поступающего в двигатель.

Применение системы охлаждения с электронным регулированием температуры позволяет регулировать температуру жидкости при частичной нагрузке двигателя в пределах от 95 до 110°C и при полной нагрузке – от 85 до 95°C.

Система охлаждения двигателя с электронным регулированием оптимизирует температуру охлаждающей жидкости в соответствии с нагрузкой двигателя. Согласно программе оптимизации, заложенной в память блока управления двигателем, посредством действия термостата и вентиляторов достигается требуемая рабочая температура двигателя. Таким образом, температура охлаждающей жидкости приведена в соответствие с нагрузкой двигателя.

Схематично система охлаждения с электронным управлением показана на рисунке.

Рис. Система охлаждения с электронным управлением:
1 – расширительный бачок; 2 – радиатор системы отопления; 3 – клапан отключения радиатора системы отопления; 4 – распределитель охлаждающей жидкости с электронным термостатом; 5 – масляный радиатор коробки передач; 6 – датчик температуры охлаждающей жидкости (на выходе жидкости из двигателя); 7 – датчик температуры охлаждающей жидкости (на выходе жидкости из радиатора); 8 – масляный радиатор; 9 – вентиляторы; 10 – основной радиатор системы охлаждения; 11 – жидкостный насос

Основными отличительными составляющими системы охлаждения с электронным регулированием от обычной является наличие распределителя охлаждающей жидкости с электронным термостатом. В связи с введением электронного регулирования системы охлаждения в блок управления двигателем поступает следующая дополнительная информация:

  • электропитание термостата (выходной сигнал)
  • температура охлаждающей жидкости на выходе из радиатора (входной сигнал)
  • управление вентиляторами радиатора (2 выходных сигнала)
  • положение потенциометра у регулятора системы отопления (входной сигнал)

Распределитель представляет собой устройство для направления потока охлаждающей жидкости в малый или большой круг.

Рис. Принципиальная схема работы распределителя охлаждающей жидкости с электронным термостатом:
1 – поток жидкости от основного радиатора; 2 – зона отстоя охлаждающей жидкости при закрытой клапанной тарелке; 3 – большая клапанная тарелка; 4 – поток жидкости от двигателя; 5 – поток жидкости от системы отопления; 6 – поток жидкости от масляного радиатора; 7 – поток жидкости от жидкостного насоса; 8 – малая клапанная тарелка; 9 – электронный термостат; а – циркуляция жидкости по малому кругу; б – циркуляция жидкости по большому кругу

В термостате в отличие от обычных систем охлаждения установлен дополнительное нагревательное сопротивление 3.

Рис. Электронный термостат:
1 – штифт; 2 – наполнитель; 3 – дополнительное сопротивление

При нагревании охлаждающей жидкости наполнитель 2 разжижается и расширяется, что ведет к подъему штифта 1. Когда к нагревательному сопротивлению не поступает ток, термостат действует как традиционный, однако температура его срабатывания повышена и составляет 110°C (температура охлаждающей жидкости на выходе из двигателя). В наполнитель встроено нагревательное сопротивление 3. Когда на него подается ток, оно нагревает наполнитель 2, который при этом расширяется, в результате чего штифт выдвигается на определенную величину «x» в зависимости от степени нагрева наполнителя. Штифт 1 теперь перемещается не только под действием нагретой охлаждающей жидкости, но и под действием нагревания сопротивления, а степень его нагревания определяет блок управления двигателем в соответствии с заложенной в него программой оптимизации температуры охлаждающей жидкости. В зависимости от характера импульса и времени его подачи изменяется степень нагревания наполнителя.

Распределитель размещен вместо подсоединительных штуцеров у головки блока цилиндров и представляет собой устройство для направления потока охлаждающей жидкости в малый или большой круг.

Малый круг служит для быстрого прогрева двигателя после запуска холодного двигателя. Система оптимизации температуры охлаждающей жидкости при этом не работает. Термостат в распределительной коробке препятствует выходу охлаждающей жидкости из двигателя и открывает кратчайший путь к насосу. Радиатор не включен в круг циркуляции охлаждающей жидкости. Охлаждающая жидкость циркулирует по малому кругу. Положение клапанных тарелок таково, что возможно движение охлаждающей жидкости только к насосу. Охлаждающая жидкость нагревается очень быстро, чему способствует циркуляция ее только по малому кругу.

Теплообменник системы отопления и масляный радиатор включены в малый круг.

Ход охлаждающей жидкости в большой круг открывается или посредством термостата в регуляторе по достижению температуры примерно 110°C, или в соответствии с нагрузкой двигателя по программе оптимизации температуры охлаждающей жидкости, заложенной в блок управления двигателем.

При полной нагрузке двигателя требуется интенсивное охлаждение охлаждающей жидкости. На термостат в распределителе поступает ток, и открывается путь для жидкости из радиатора. Одновременно посредством механической связи малая клапанная тарелка перекрывает путь к насосу в малом круге.

Насос подает охлаждающую жидкость, выходящую из головки блока непосредственно к радиатору. Охлажденная жидкость из радиатора поступает в нижнюю часть блока двигателя и оттуда засасывается насосом.

Возможна также комбинированная циркуляция охлаждающей жидкости. Одна часть жидкости проходит по малому кругу, другая – по большому.

Управление термостатом в оптимизированной системе охлаждения двигателя (движение охлаждающей жидкости по малому или большому кругу) осуществляется в соответствии с трехмерными графиками зависимости оптимальной температуры охлаждающей жидкости от ряда факторов, основными из которых являются нагрузка двигателя, частота вращения коленчатого вала, скорость движения автомобиля и температура всасываемого воздуха. По этим графикам определяется величина номинальной температуры охлаждающей жидкости.

Термостат срабатывает лишь тогда, когда фактическая величина температуры охлаждающей жидкости выходит за пределы поля допуска номинальной величины температуры, что и обеспечивает постоянство нахождения фактической температуры в поле допуска номинальной температуры.

Фактические значения температуры охлаждающей жидкости снимаются с двух различных мест контура системы охлаждения и передаются в блок управления двигателем в виде сигналов по напряжению. Датчики температуры охлаждающей жидкости на выходе из двигателя и на выходе охлаждающей жидкости из двигателя в распределителе работают как датчики с отрицательным температурным коэффициентом. Номинальные величины температуры охлаждающей жидкости заложены в память блока управления двигателем в качестве графических зависимостей.

При эксплуатации двигателя в странах с суровым климатом может применяться дополнительный электроподогрев для повышения температуры охлаждающей жидкости. Дополнительный подогрев состоит из трех свечей накаливания. Они встроены в месте подсоединения магистрали охлаждающей жидкости к головке блока. По сигналу от блока управления реле включает малый или большой подогрев. В зависимости от резерва по току генератора включаются одна, две или три свечи накаливания для подогрева охлаждающей жидкости.