Авторезина

Тиристоры. Устройство, принцип работы, вольт-амперная характеристика

В переключательных схемах часто используется тиристор, принцип работы которого напоминает электронный ключ. Он представляет собой полупроводниковый прибор, имеющий три или несколько взаимодействующих выпрямляющих переходов. Однако тиристор не способен перейти в состояние закрытого типа, поэтому его называют ключом, который является не полностью управляемым.

Устройство и виды полупроводниковых приборов

Прежде чем рассматривать принцип работы тиристоров в цепях, необходимо разобраться с тем, как они устроены, какие виды существуют. Состоят они из четырех последовательно соединенных слоев, которые имеют разный тип проводимости. С внешней стороны есть контакты - анод и катод. Приборы могут обладать двумя управляющими электродами, прикрепленными к внутренним слоям. Изменения состояния удается добиться за счет подачи сигнала непосредственно на проводник.

Различают два основных вида тиристоров:

  1. Динисторы представляют собой диодные полупроводниковые приборы. В данном случае открывание осуществляется посредством подачи высокого напряжения между контактами.
  2. Тринисторы - это триодные аналоги. Их удается открывать за счет воздействия управляющего тока на электрод.

Процесс запирания может производиться двумя способами. Первый из них подразумевает снижение электрического тока ниже уровня удержания. Вариант применим для всех видов тиристоров. Второй способ заключается в нагнетании запирающего напряжения непосредственно на управляющий контакт. Он используется только для тринисторов запираемого типа.

Возможность обратной проводимости

Рассматривая принцип работы тиристора, следует понимать, что элементы могут быть классифицированы по обратному напряжению.

Всего существует четыре варианта изделий:

  1. Обратно-проводящие приборы обладают небольшим обратным напряжением. Оно составляет всего несколько вольт.
  2. Элементы, не проводящие напряжение в обратном направлении в закрытом состоянии.
  3. Симисторы представляют собой симметричные приборы, которые коммутируют электрические токи в том или ином направлении.
  4. Изделия с ненормированным напряжением обратного направления.

Используя симисторы, необходимо помнить, что они функционируют симметрично лишь на первый взгляд. При подаче отрицательного (на анод) и положительного (на управляющий электрод) напряжения они не способны открываться, а в некоторых случаях могут выходить из строя.

В электронике симисторы относят к управляемым тиристорам, принцип работы которых заключается в коммутации цепей переменного тока. При проектировании таких схем, необходимо изучать документацию конкретного изделия, чтобы определить, какие сигналы допустимы. Отдельные виды симисторов могут иметь некоторые ограничения.

Работа в цепи постоянного тока

Если объяснять принцип работы тиристора простым языком, то он заключается во включении полупроводникового прибора посредством подачи импульса электрического тока непосредственно в цепь управления положительной полярности. На продолжительность переходного процесса существенно влияет характер производимой нагрузки, а также другие факторы:

  • скорость и амплитуда созданного импульса;
  • температура полупроводниковой конструкции;
  • передаваемое напряжение;
  • ток нагрузки.

В цепи с тиристором при увеличении прямого напряжения не должно фиксироваться завышенных значений скорости нарастания. В противном случае может происходить непреднамеренное включение прибора без подачи сигнала. Однако крутизна производимого импульса не должна быть низкой.

Выключение элементов может происходить естественным или принудительным образом. В первом случае коммутация в системах переменного тока осуществляется в момент падения электрического тока до минимума. Что касается вариантов принудительного выключения, то оно может быть весьма разнообразным:

  1. Подключение специализированной цепи с наличием заряженного конденсатора вызывает возникновение разряда на проводящий элемент. Встречный поток снижает ток до нуля, поэтому прибор выключается.
  2. Подключение контура, вызывающего колебательный разряд, позволяет пропустить электричество через тиристор на встречу прямому току. При достижении равновесия происходит выключение.
  3. Переходный процесс может вызываться при оказании комплексной нагрузки. При наличии определенных параметров возникает колебательный характер, подразумевающий изменение полярности.

Функционирование в цепи переменного тока

Теперь следует рассмотреть принцип работы тиристора в цепи, которая пропускает переменный ток. При его внедрении можно производить включение и отключение электрических сетей с активной нагрузкой, а также осуществлять изменение среднего и текущего значений тока путем регулировки подачи сигнала.

Не новость даже для чайников - принцип работы тиристора заключается в пропускании электричества в одном направлении, поэтому в цепях с переменным током осуществляется встречно-параллельное включение. Значения могут варьироваться путем изменения самого момента подачи на приборы открывающих сигналов. Углы регулируются за счет системы управления.

  1. Фазовый метод регулировки с принудительной коммутацией предполагает применение специальных узлов.
  2. Широтно-импульсное управление подразумевает отсутствие сигнала в закрытом состоянии и его наличие в открытом положении, когда к нагрузке приложено определенное напряжение.

Режим обратного запирания

Рассказывая о принципе работы триодного тиристора, нельзя не отметить, что оно может работать в разных режимах. При обратном запирании непосредственно к аноду полупроводника приложено отрицательное напряжение по отношению к катодному контакту. Переходы при таком варианте смещены в противоположном направлении.

Существуют факторы, ограничивающие применение подобного режима. Первый из них - это лавинный пробой, а второй - прокол обедненной области. Это объясняется тем, что существенная часть напряжения снижается на одном из переходов. Возникает их смыкание или происходит пробой.

Режим прямого запирания

Принцип работы тиристора в режиме прямого запирания предполагает обратное смещение одного из переходов. Противоположные слои сдвинуты в прямом направлении. Основная часть приложенного напряжения снижается на единичном переходе. Через остальные слои в соприкасающиеся области инжектируются носители, позволяющие уменьшить сопротивление на проводящем элементе. Происходит увеличение проходящего тока. Падение напряжения уменьшается.

Увеличение прямого напряжения приводит к медленному росту электрического тока. В таком режиме полупроводник считается запертым, что связано с повышенным сопротивлением единичного перехода. При некотором показателе напряжения процесс начинает приобретать лавинообразный характер. Прибор переходит во включенное состояние, в нем устанавливается электрический ток, который зависит от источника и сопротивления цепи.

Двухтранзисторная модель

Для объяснения устройства и принципа работы тиристора в режиме прямого запирания применяется двухтранзисторная модель. Данный полупроводниковый прибор можно рассматривать как два совмещенных транзистора с противоположными выводами. Переход в центре используется в качестве коллектора дырок и электронов, которые инжектируются определенными переходами.

Соотношения не изменяются при протекании токов в противоположном направлении. При повышении коэффициента в замкнутой петле происходит лавинообразный процесс, подразумевающий увеличение тока непосредственно через структуру. Электрический ток ограничен лишь сопротивлением наружной цепи.

Чем различаются динисторы и тринисторы

Принципиальных отличий между характеристиками и принципом работы тиристоров нельзя найти. Однако открытие динистора производится при наличии определенного напряжения между двумя основными выводами. Оно зависит от типа используемого устройства. В случае с тринистором напряжение открытия удается снизить принудительным образом. Это можно сделать, если подать импульс электрического тока необходимой величины непосредственно на управляющий электрод. Тринисторы получили наибольшее распространение среди приборов из категории тиристоров.

Основные характеристики

При выборе тиристоров обращают внимание на определенные параметры:

  1. Напряжение включения позволяет перевести полупроводниковый прибор в рабочее состояние.
  2. Временной интервал задержки запуска и остановки изделия.
  3. Уровень обратного тока при максимальном значении обратного напряжения.
  4. Показатель общей рассеивающей мощности.
  5. Прямое напряжение при предельном токе анода.
  6. Пиковый ток электрода, обеспечивающего управление.
  7. Обратное напряжение в закрытом состоянии.
  8. Максимальный открытый ток в открытом положении.

При выборе тиристора не следует забывать о предназначении прибора. На это непосредственное влияние оказывает временной интервал перехода в открытое или закрытое состояние. Как правило, период включения является более коротким, чем промежуток выключения.

Схемы с применением тиристоров

Тиристорные схемы подразделяются на четыре категории:

  1. Пороговые изделия используют возможности перехода полупроводников из одного положения в другое при наличии определенного напряжения. К таковым относятся генераторы колебаний и фазовые регуляторы нагрузки.
  2. Силовые ключи отличаются низкой мощностью. Ток рассеивается элементами в переключательных схемах в открытом состоянии. В закрытом положении электричество не пропускается.
  3. Коммутация постоянного напряжения вполне возможна при использовании приборов с большой мощностью. Есть несколько способов, позволяющих закрывать незапираемые элементы.
  4. Некоторые экспериментальные устройства работают с применением полупроводниковых приборов в переходных режимах, где имеются участки с отрицательным уровнем сопротивления.

В качестве заключения

Чаще всего рассказывают о принципах работы тиристоров для студентов специализированных училищ, которые готовят специалистов в области электротехники. Однако не помешает изучить информацию об устройстве и функционировании универсальных полупроводниковых приборов простым людям, проявляющим интерес к проектированию различных электрических схем.

1.1 Определение, виды тиристоров

1.2 Принцип действия

1.3 Параметры тиристоров

Глава 2. Применение тиристоров в регуляторах мощности

2.1 Общие сведения о различных регуляторах

2.2 Процесс управления напряжением при помощи тиристора

2.3 Управляемый выпрямитель на тиристоре

Глава 3. Практические разработки регуляторов мощности на тиристорах

3.1 Регулятор напряжения на тиристоре КУ201К

3.2 Мощный управляемый выпрямитель на тиристорах

Заключение

Литература

Введение

В данной работе рассмотрены несколько вариантов устройств, где используются элементы тиристоры в качестве регуляторов напряжения и в качестве выпрямителей. Приведены теоретическое и практическое описания принципа действия тиристоров и устройств, схемы этих устройств.

Управляемый выпрямитель на тиристорах - элементах, обладающих большим коэффициентом усиления по мощности, позволяет получать большие токи в нагрузке при незначительной мощности, затрачиваемой в цепи управления тиристора.

В данной работе рассмотрены два варианта таких выпрямителей, которые обеспечивают максимальный ток в нагрузке до 6 А с пределом регулировки напряжения от 0 до 15 В и от 0,5 до 15 В и устройство для регулировки напряжения на нагрузке активного и индуктивного характера, питаемой от сети переменного тока напряжением 127 и 220 В с пределами регулировки от 0 до номинального напряжения сети.

Глава 1. Понятие о тиристоре. Виды тиристоров. Принцип действия

1.1 Определение, виды тиристоров

Тиристором называют полупроводниковый прибор, основу которого составляет четырехслойная структура, способная переключаться из закрытого состояния в открытое и наоборот. Тиристоры предназначены для ключевого управления электрическими сигналами в режиме открыт - закрыт (управляемый диод).

Простейшим тиристором является динистор – неуправляемый переключающий диод, представляющий собой четырехслойную структуру типа p-n-p-n (рис. 1.1.2). Здесь, как и у других типов тиристоров, крайние n-p-n-переходы называются эмиттерными, а средний p-n-переход – коллекторным. Внутренние области структуры, лежащие между переходами, называются базами. Электрод, обеспечивающий электрическую связь с внешней n-областью, называется катодом, а с внешней p-областью – анодом.

В отличие от несимметричных тиристоров (динисторов, тринисторов) в симметричных тиристорах обратная ветвь ВАХ имеет вид прямой ветви. Это достигается встречно-параллельным включением двух одинаковых четырехслойных структур или применением пятислойных структур с четырьмя p-n-переходами (симисторы).

Рис. 1.1.1 Обозначения на схемах: а) симистора б) динистора в) тринистора.

Рис. 1.1.2 Структура динистора.

Рис. 1.1.3 Структура тринистора.

1.2 Принцип действия

При включении динистора по схеме, приведенной на рис. 1.2.1, коллекторный p-n-переход закрыт, а эмиттерные переходы открыты. Сопротивления открытых переходов малы, поэтому почти все напряжение источника питания приложено к коллекторному переходу, имеющему высокое сопротивление. В этом случае через тиристор протекает малый ток (участок 1 на рис. 1.2.3).

Рис. 1.2.1. Схема включения в цепь неуправляемого тиристора (динистора).

Рис. 1.2.2. Схема включения в цепь управляемого тиристора (тринистора).

Рис.1.2.3. Вольтамперная характеристика динистора.

Рис.1.2.4. Вольтамперная характеристика тиристора.

Если увеличивать напряжение источника питания, ток тиристора увеличивается незначительно, пока это напряжение не приблизится к некоторому критическому значению, равному напряжению включения Uвкл. При напряжении Uвкл в динисторе создаются условия для лавинного размножения носителей заряда в области коллекторного перехода. Происходит обратимый электрический пробой коллекторного перехода (участок 2 на рис. 1.2.3). В n-области коллекторного перехода образуется избыточная концентрация электронов, а в p-области - избыточная концентрация дырок. С увеличением этих концентраций снижаются потенциальные барьеры всех переходов динистора. Возрастает инжекция носителей через эмиттерные переходы. Процесс носит лавинообразный характер и сопровождается переключением коллекторного перехода в открытое состояние. Рост тока происходит одновременно с уменьшением сопротивлений всех областей прибора. Поэтому увеличение тока через прибор сопровождается уменьшением напряжения между анодом и катодом. На ВАХ этот участок обозначен цифрой 3. Здесь прибор обладает отрицательным дифференциальным сопротивлением. Напряжение на резисторе возрастает и происходит переключение динистора.

После перехода коллекторного перехода в открытое состояние ВАХ имеет вид, соответствующий прямой ветви диода (участок 4). После переключения напряжение на динисторе снижается до 1 В. Если и дальше увеличивать напряжение источника питания или уменьшать сопротивление резистора R, то будет наблюдаться рост выходного тока, как в обычной схеме с диодом при прямом включении.

При уменьшении напряжения источника питания восстанавливается высокое сопротивление коллекторного перехода. Время восстановления сопротивления этого перехода может составлять десятки микросекунд.

Напряжение Uвкл при котором начинается лавинообразное нарастание тока, может быть снижено введением не основных носителей заряда в любой из слоев, прилегающих к коллекторному переходу. Дополнительные носители заряда вводятся в тиристоре вспомогательным электродом, питаемым от независимого источника управляющего напряжения (Uупр). Тиристор со вспомогательным управляющим электродом называется триодным, или тринисторным. На практике при использовании термина «тиристор» подразумевается именно элемент. Схема включения такого тиристора показана на рис. 1.2.2. Возможность снижения напряжения U при росте тока управления, показывает семейство ВАХ (рис. 1.2.4).

Если к тиристору приложить напряжение питания, противоположной полярности (рис. 1.2.4), то эмиттерные переходы окажутся закрытыми. В этом случае ВАХ тиристора напоминает обратную ветвь характеристики обычного диода. При очень больших обратных напряжениях наблюдается необратимый пробой тиристора.

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону).

Схема тиристора

Этот преобразователь имеет два устойчивых состояния: закрытое (состояние низкой проводимости) и открытое (состояние высокой проводимости). Назначение тиристора – выполнение функции электроключа, особенность которого – невозможность самостоятельного переключения в закрытое состояние. Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока. Основным материалом при производстве этого полупроводникового устройства является кремний. Корпус изготавливается из полимерных материалов или металла – для моделей, работающих с большими токами.

Устройство тиристора и области применения

В состав прибора входят 3 электрода:

  • анод;
  • катод;
  • управляющий электрод.

В отличие от двухслойного диода, тиристор состоит из 4-х слоев – p-n-p-n. Оба устройства пропускают ток в одну сторону. На большинстве старых моделей его направление обозначается треугольником. Внешнее напряжение подается знаком «-» на катодный электрод (область с электропроводностью n-типа), «+» – на анодный электрод (область с электропроводностью p-типа).

Тиристоры применяют в сварочных инверторах, блоках питания зарядного устройства для автомобиля, в генераторах, для устройства простой сигнализации, реагирующей на свет.

Принцип работы тиристоров

В специализированной литературе тиристор называется «однооперационным» и относится к группе не полностью управляемых радиодеталей. Он переходит в активное состояние при получении импульса определенной полярности от объекта управления. На скорость активации и последующее функционирование оказывают влияние:

  • характер нагрузки – индуктивная, реактивная;
  • величина тока нагрузки;
  • скорость и амплитуда увеличения управляющего импульса;
  • температура среды устройства;
  • уровень напряжения.

Переключение из одного состояния в другое осуществляется с помощью управляющих сигналов. Для полного отключения тиристора требуется выполнить дополнительные действия. Выключение осуществляется несколькими способами:

  • естественное выключение (естественная коммутация);
  • принудительное выключение (принудительная коммутация), этот вариант может осуществляться множеством способов.

При эксплуатации возможны незапланированные переключения из одного положения в другое, которые провоцируются перепадами характеристик электроэнергии и температуры.

Классификационные признаки

По способу управления различают следующие виды тиристоров:

Диодные (динисторы)

Активируются импульсом высокого напряжения, подаваемым на анод и катод. В конструкции присутствуют 2 электрода, без управляющего.

Триодные (тринисторы)

Разделяются на две группы. В первой управляющее напряжение поступает катод и электрод управления, во второй – на анод и управляющий электрод.

Симисторы

Выполняют функции двух включенных параллельно тиристоров.

Оптотиристоры

Их функционирование осуществляется под действием светового потока. Функцию управляющего электрода выполняет фотоэлемент.

По обратной проводимости тиристоры разделяются на:

  • обратно проводящие;
  • обратно непроводящие;
  • с ненормируемым обратным значением напряжения;
  • пропускающие токи в двух направлениях.

Основные характеристики тиристоров, на которые стоит обратить внимание при покупке

  • Максимально допустимый ток. Эта величина характеризует наибольшее значение тока открытого тиристора. У мощных устройств она составляет несколько сотен ампер.
  • Максимально допускаемый обратный ток.
  • Прямое напряжение. Этот параметр тиристора равен падению напряжения при максимально возможном токе.
  • Обратное напряжение. Характеризует максимально допустимое напряжение на устройстве, находящемся в закрытом состоянии, при котором оно не утрачивает способность выполнять свои функции.
  • Напряжение включения. Это наименьшая величина, при которой возможно функционирование тиристора.
  • Минимальный ток управляющего электрода. Равен величине тока, которого достаточно для активации устройства.
  • Наибольшая допустимая рассеиваемая мощность.

Проверка тиристора на исправность

Прибор можно проверить несколькими способами, один из них – использование специального самодельного тестера, собираемого по представленной ниже схеме.

Принцип действия тиристора

Тиристор является силовым электронным не полностью управляемым ключом. Поэтому иногда в технической литературе его называют однооперационным тиристором, который может сигналом управления переводиться только в проводящее состояние, т. е. включаться. Для его выключения (при работе на постоянном токе) необходимо принимать специальные меры, обеспечивающие спадание прямого тока до нуля.

Тиристорный ключ может проводить ток только в одном направлении, а в закрытом состоянии способен выдержать как прямое, так и обратное напряжение.

Тиристор имеет четырехслойную p-n-p-n-структуру с тремя выводами: анод (A), катод (C) и управляющий электрод (G), что отражено на рис. 1

Рис. 1. Обычный тиристор: a) – условно-графическое обозначение; б) – вольтамперная характеристика.

На рис. 1, b представлено семейство выходных статических ВАХ при различных значениях тока управления iG. Предельное прямое напряжение, которое выдерживается тиристором без его включения, имеет максимальные значения при iG = 0. При увеличении тока iG прямое напряжение, выдерживаемое тиристором, снижается. Включенному состоянию тиристора соответствует ветвь II, выключенному – ветвь I, процессу включения – ветвь III. Удерживающий ток или ток удержания равен минимально допустимому значению прямого тока iA , при котором тиристор остается в проводящем состоянии. Этому значению также соответствует минимально возможное значение прямого падения напряжения на включенном тиристоре.

Ветвь IV представляет собой зависимость тока утечки от обратного напряжения. При превышении обратным напряжением значения UBO начинается резкое возрастание обратного тока, связанное с пробоем тиристора. Характер пробоя может соответствовать необратимому процессу или процессу лавинного пробоя, свойственного работе полупроводникового стабилитрона.

Тиристоры являются наиболее мощными электронными ключами, способными коммутировать цепи с напряжением до 5 кВ и токами до 5 кА при частоте не более 1 кГц.

Конструктивное исполнение тиристоров приведено на рис. 2.

Рис. 2. Конструкция корпусов тиристоров: а) – таблеточная; б) – штыревая

Тиристор в цепи постоянного тока

Включение обычного тиристора осуществляется подачей импульса тока в цепь управления положительной, относительно катода, полярности. На длительность переходного процесса при включении значительное влияние оказывают характер нагрузки (активный, индуктивный и пр.), амплитуда и скорость нарастания импульса тока управления iG , температура полупроводниковой структуры тиристора, приложенное напряжение и ток нагрузки. В цепи, содержащей тиристор, не должно возникать недопустимых значений скорости нарастания прямого напряжения duAC/dt, при которых может произойти самопроизвольное включение тиристора при отсутствии сигнала управления iG и скорости нарастания тока diA/dt. В то же время крутизна сигнала управления должна быть высокой.

Среди способов выключения тиристоров принято различать естественное выключение (или естественную коммутацию) и принудительное (или искусственную коммутацию). Естественная коммутация происходит при работе тиристоров в цепях переменного тока в момент спадания тока до нуля.

Способы принудительной коммутации весьма разнообразны. Наиболее характерны из них следующие: подключение предварительно заряженного конденсатора С ключом S (рис 3, а); подключение LC-цепи с предварительно заряженным конденсатором CK (рис 3 б); использование колебательного характера переходного процесса в цепи нагрузки (рис 3, в).


Рис. 3. Способы искусственной коммутации тиристоров: а) – посредством заряженного конденсатора С; б) – посредством колебательного разряда LC-контура; в) – за счёт колебательного характера нагрузки

При коммутации по схеме на рис. 3,а подключение коммутирующего конденсатора с обратной полярностью, например другим вспомогательным тиристором, вызовет его разряд на проводящий основной тиристор. Так как разрядный ток конденсатора направлен встречно прямому току тиристора, последний снижается до нуля и тиристор выключится.

В схеме на рис. 3,б подключение LC-контура вызывает колебательный разряд коммутирующего конденсатора Ск. При этом в начале разрядный ток протекает через тиристор встречно его прямому току, когда они становятся равными, тиристор выключается. Далее ток LC-контура переходит из тиристора VS в диод VD. Пока через диод VD протекает ток контура, к тиристору VS будет приложено обратное напряжение, равное падению напряжения на открытом диоде.

В схеме на рис. 3,в включение тиристора VS на комплексную RLC-нагрузку вызовет переходный процесс. При определенных параметрах нагрузки этот процесс может иметь колебательный характер с изменением полярности тока нагрузки iн. В этом случае после выключения тиристора VS происходит включение диода VD, который начинает проводить ток противоположной полярности. Иногда этот способ коммутации называется квазиестественным, так как он связан с изменением полярности тока нагрузки.

Тиристор в цепи переменного тока

При включении тиристора в цепь переменного тока возможно осуществление следующих операций:

    Включение и отключение электрической цепи с активной и активно-реактивной нагрузкой;

    изменение среднего и действующего значений тока через нагрузку за счёт того, что имеется возможность регулировать момент подачи сигнала управления.

Так как тиристорный ключ способен проводить электрический ток только в одном направлении, то для использования тиристоров на переменном токе применяется их встречно-параллельное включение (рис. 4,а).

Рис. 4. Встречно-параллельное включение тиристоров (а) и форма тока при активной нагрузке (б)

Среднее и варьируются за счёт изменения момента подачи на тиристоры VS1 и VS2 открывающих сигналов, т.е. за счёт изменения угла и (рис. 4,б). Значения этого угла для тиристоров VS1 и VS2 при регулировании изменяется одновременно при помощи системы управления. Угол называется углом управления или углом отпирания тиристора.

Наиболее широкое применение в силовых электронных аппаратах получили фазовое (рис. 4,а,б) и широтно-импульсное управление тиристорами (рис. 4,в).

Рис. 5. Вид напряжения на нагрузке при: а) – фазовом управлении тиристором; б) – фазовом управлении тиристором с принудительной коммутацией; в) – широтно-импульсном управлении тиристором

При фазовом методе управления тиристором с принудительной коммутацией регулирование тока нагрузки возможно как за счёт изменения угла ? , так и угла ? . Искусственная коммутация осуществляется с помощью специальных узлов или при использовании полностью управляемых (запираемых) тиристоров.

При широтно-импульсном управлении (широтно-импульсной модуляции – ШИМ) в течение времени Тоткр на тиристоры подан управляющий сигнал, они открыты и к нагрузке приложено напряжение Uн. В течение времени Тзакр управляющий сигнал отсутствует и тиристоры находятся в непроводящем состоянии. Действующее значение тока в нагрузке

где Iн.м. – ток нагрузки при Тзакр = 0.

Кривая тока в нагрузке при фазовом управлении тиристорами несинусоидальна, что вызывает искажение формы напряжения питающей сети и нарушения в работе потребителей, чувствительных к высокочастотным помехам – возникает так называемая электромагнитная несовместимость.

Запираемые тиристоры

Тиристоры являются наиболее мощными электронными ключами, используемыми для коммутации высоковольтных и сильноточных (сильнотоковых) цепей. Однако они имеют существенный недостаток – неполную управляемость, которая проявляется в том, что для их выключения необходимо создать условия снижения прямого тока до нуля. Это во многих случаях ограничивает и усложняет использование тиристоров.

Для устранения этого недостатка разработаны тиристоры, запираемые сигналом по управляющему электроду G. Такие тиристоры называют запираемыми (GTO – Gate turn-off thyristor) или двухоперационными.

Запираемые тиристоры (ЗТ) имеют четырехслойную р-п-р-п структуру, но в то же время обладают рядом существенных конструктивных особенностей, придающих им принципиально отличное от традиционных тиристоров – свойство полной управляемости. Статическая ВАХ запираемых тиристоров в прямом направлении идентична ВАХ обычных тиристоров. Однако блокировать большие обратные напряжения запираемый тиристор обычно не способен и часто соединяется со встречно-параллельно включенным диодом. Кроме того, для запираемых тиристоров характерны значительные падения прямого напряжения. Для выключения запираемого тиристора необходимо подать в цепь управляющего электрода мощный импульс отрицательного тока (примерно 1:5 по отношению к значению прямого выключаемого тока), но короткой длительности (10-100 мкс).

Запираемые тиристоры также имеют более низкие значения предельных напряжений и токов (примерно на 20-30 %) по сравнению с обычными тиристорами.

Основные типы тиристоров

Кроме запираемых тиристоров разработана широкая гамма тиристоров различных типов, отличающихся быстродействием, процессами управления, направлением токов в проводящем состоянии и т.д. Среди них следует отметить следующие типы:

    тиристор-диод , который эквивалентен тиристору со встречно-параллельно включенным диодом (рис. 6.12,a);

    диодный тиристор (динистор) , переходящий в проводящее состояние при превышении определённого уровня напряжения, приложенного между А и С (рис. 6,b);

    запираемый тиристор (рис. 6.12,c);

    симметричный тиристор или симистор , который эквивалентен двум встречно-параллельно включенным тиристорам (рис. 6.12,d);

    быстродействующий инверторный тиристор (время выключения 5-50 мкс);

    тиристор с полевым управлением по управляющему электроду , например, на основе комбинации МОП-транзистора с тиристором;

    оптотиристор, управляемый световым потоком.

Рис. 6. Условно-графическое обозначение тиристоров: a) – тиристор-диод; b) – диодный тиристор (динистор); c) – запираемый тиристор; d) - симистор

Защита тиристоров

Тиристоры являются приборами, критичными к скоростям нарастания прямого тока diA/dt и прямого напряжения duAC/dt. Тиристорам, как и диодам, присуще явление протекания обратного тока восстановления, резкое спадание которого до нуля усугубляет возможность возникновения перенапряжений с высоким значением duAC/dt. Такие перенапряжения являются следствием резкого прекращения тока в индуктивных элементах схемы, включая монтажа. Поэтому для защиты тиристоров обычно используют различные схемы ЦФТП, которые в динамических режимах осуществляют защиту от недопустимых значений diA/dt и duAC/dt.

В большинстве случаев внутреннее индуктивное сопротивление источников напряжения, входящих в цепь включенного тиристора, оказывается достаточным, чтобы не вводить дополнительную индуктивность LS . Поэтому на практике чаще возникает необходимость в ЦФТП, снижающих уровень и скорость перенапряжений при выключении (рис. 7).

Рис. 7. Типовая схема защиты тиристора

Для этой цели обычно используют RC-цепи, подключаемые параллельно тиристору. Существуют различные схемотехнические модификации RC-цепей и методики расчета их параметров для разных условий использования тиристоров.

Для запираемых тиристоров применяются цепи формирования траектории переключения, аналогичных по схемотехнике ЦФТП транзисторов.

Тиристор - электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехник у, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод положительный вывод;
  • катод отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность . При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.